Computation of Coprime Factorizations of Rational Matrices
نویسنده
چکیده
We propose a numerically reliable state space algorithm for computing coprime factorizations of rational matrices with factors having poles in a given stability domain. The new algorithm is based on a recursive generalized Schur technique for poles dislocation by means of proportional-derivative state feedback. The proposed algorithm is generally applicable regardless the underlying descriptor state space representation is minimal or not, or is stabilizable/detectable or not.
منابع مشابه
Computation of Normalized Coprime Factorizations of Rational Matrices
We propose a new computational approach based on descriptor state space algorithms for computing normalized coprime factorizations of arbitrary rational matrices. The proposed approach applies to both continuousand discrete-time rational transfer-function matrices and shows that each rational matrix possesses a normalized coprime factorization with proper factors. The new method is conceptually...
متن کاملRecursive computation of coprime factorizations
We propose general computational procedures based on descriptor state-space realizations to compute coprime factorizations of rational matrices with minimum degree denominators. Enhanced recursive pole dislocation techniques are developed, which allow to successively place all poles of the factors into a given “good” domain of the complex plane. The resulting McMillan degree of the denominator ...
متن کاملA note on computing range space bases of rational matrices
We discuss computational procedures based on descriptor state-space realizations to compute proper range space bases of rational matrices. The main computation is the orthogonal reduction of the system matrix pencil to a special Kronecker-like form, which allows to extract a full column rank factor, whose columns form a proper rational basis of the range space. The computation of several types ...
متن کاملGeneralized Schur Methods to Compute Coprime Factorizations of Rational Matrices
Numerically reliable state space algorithms are proposed for computing the following stable coprime factorizations of rational matrices factorizations with least order denominators factorizations with inner denominators and factorizations with proper stable factors The new algorithms are based on a recursive generalized Schur algorithm for pole assignment They are generally applicable regardles...
متن کاملMinimal Degree Coprime Factorization of Rational Matrices
Given a rational matrix G with complex coefficients and a domain Γ in the closed complex plane, both arbitrary, we develop a complete theory of coprime factorizations of G over Γ, with denominators of McMillan degree as small as possible. The main tool is a general pole displacement theorem which gives conditions for an invertible rational matrix to dislocate by multiplication a part of the pol...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 1997